Question 1

1(c) methyl orange

Question 2

2(d)(i)	magnesium chloride (1)	2
	water (1)	
2(d)(ii)	1st box from top ticked (magnesium carbonate)	1

Question 3

3(e)	sodium sulfate (1)	3
	carbon dioxide (1)	
	water (1)	
3(f)	colourless	1

Question 4

4(c)	magnesium ethanoate (1)	2
	hydrogen (1)	

Question 5

5(c)(iii)	pH 10	1	1
-----------	-------	---	---

Question 6

6(c)(i)	OH-	1
6(c)(ii)	pH 13	1

Question 7

7(b)	calcium chloride (1)	2	
	water (1)		

Question 8

8(d)(i)	M1 CaO is basic	2
	M2 SiO ₂ is acidic	

Question 9

9(a)	proton acceptor	1
9(b)	a soluble base	1
9(c)	M1 blue	2
	M2 colourless	
9(d)(i)	M1 HNO ₃	2
	M2 lowest pH	
9(d)(ii)	universal indicator	1
9(e)	(CH₃COOH) ⇌ CH₃COO⁻ + H⁺	3
	M1 H⁺	
	M2 CH3COO-	
	M3 <i>⇌</i>	

9(f)	$H^+ + OH^- \rightarrow H_2O$	1
9(g)	M1 (0.0150 × 20.0/1000 =) 0.0003(00) / 3.00 × 10 ⁻⁴ (mol)	5
	M2 (M1 × 2 = $3.00 \times 10^{-4} \times 2$ =) $0.0006(00) / 6.00 \times 10^{-4}$ (mol)	
	M3 (M2 × 1000/25.0 = $6.00 \times 10^{-4} \times 1000 / 25.0 =$) 0.0240 (mol / dm ³)	
	M4 63 (g / mol)	
	M5 (M3 × M4 = $0.0240 \times 63 = 1.51(2) (g / dm^3)$	

Question 10

10(a)	metallic	1
10(b)(i)	lighted splint and (squeaky) pop	1
10(b)(ii)	14	1
10(b)(iii)	universal indicator	1
10(b)(iv)	$2Na(s) + 2H_2O(1) \rightarrow 2NaOH(aq) + H_2(g)$	3
	M1 NaOH as product in equation (1)	
	M2 fully correct equation (1)	
	M3 state symbols (1)	

Question 11

11(a) B	1
---------	---

Question 12

Question 13

13(c)(i)	proton donor	1
13(c)(ii)	partial dissociation	1
13(c)(iii)	M1 4 × –2 or –8 (1)	2
	M2 P + $(4 \times -2) = -3 : P = +5$ (1)	